Electronic Structure of Condensed Matter Fudan University - April 2010

Lecture 8 Summary and Conclusions

Instructor: Richard M. Martin University of Illinois Stanford University

RMartin@illinois.edu

Basis of Most Modern Calculations Density Functional Theory

- Why is Density Functional Theory so widely used?
- A new approach to the many-body interacting electron problem
 - In principle DFT is exact
 - Kohn and Sham introduced the idea of an auxiliary system that in principle gives the exact ground state density and energy - but NOT other properties.
 - In practice, DFT allows useful approximations

Last slide from Lect. 1

Goal of Course

1

Understanding of the role of electrons in condensed matter

• Practical, useful knowledge of methods that are working tools of theorists, experimentalists, and researchers in many fields Without the burden of heavy math, many-body theory,

Appreciation for the real many-body problems presented by electrons in condensed matter

Understanding when to expect correlation to be important The grand challenges of condensed matter physics today

For those who are interested

• Practical, useful knowledge of many-body methods that are becoming more and more important for quantitative predictions and understanding the grand challenges in condensed matter

The Car-Parrinello Advance

Car-Parrinello Method – 1985

 Simultaneous solution of Kohn-Sham equations for electrons and Newton's equations for nuclei

A revolution in the power of the methods

- Relaxation of positions of nuclei to find structures
- "First principles" molecular dynamics simulations of solids and liquids with nuclei moving thermally
- Chemical reactions, . . .
- Stimulated further developments . . .

3

Contents of a typical solid state physics text From Lect. 1 (Kittel, Ashcroft and Mermin,)

Structures of crystals

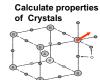
- Definitions of structures
- Typical bonding and structures
- Structural phase transitions
- Mechanical Properties
 - Lattice vibrations phonons
 - Elastic constants
 - Piezoelectric constants
 - Effective charges
- Thermal Properties
 - Heat capacity, heat conduction
- Electronic properties
 - Definition of bands
 - Metals vs. insulators
 - Conductivity, dielectric functions
 - Magnetism

From Lect. modified Properties that can be described without knowing anything about electrons

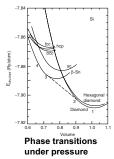
Did we answer the question: Why are they a part of electronic structure?

Properties that can only be understood in terms of the electrons?

So what is left to do?


- Failures of present density functional approximations in important cases!
- Electronic excitations – The "band gap problem"
- Strongly interacting systems – Magnetic insulators, metal-insulator transitions, . . .
- Example of "Failure" that has been solved!
 - Weak Van der Waals bonds
 - Development of non-local functional has the right distance dependence and is accurate enough for real materials

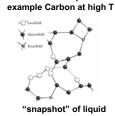
7


Very brief presentation in special lectures

Useful!

Treat many types of materials in a unified way from the basic equations

Predict crystal structures Example – atomic positions in a ferroelectric



Predict properties of nanostructures

Si148H12

Structures of surfaces

Many other examples!

Simulation of Liquids -

Reactions – catalysis at a surface

Not covered due to time constraint

Magnetism

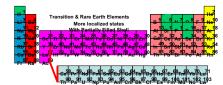
Wannier functions – transformation from extended Bloch states to localized orbitals

Linear scaling methods – using Wannier functions

Electric polarization in solids – using Wannier functions (or Berry phases)

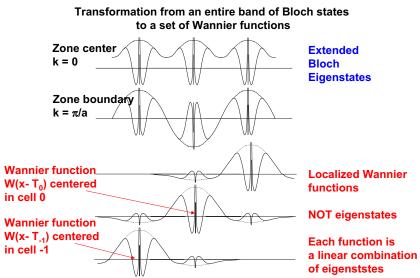
Excitations and time dependent density functional theory

Magnetism


The good thing about magnetism

Simple models give the right qualitative understanding Atom-like magnetic moments Ordered for T < Tc -- disordered for T > Tc

Another good thing about magnetism


Simple models give the right qualitative understanding Electrons in bands Magnetic moment is n_{up} - n_{down}

The hard thing about the theory of magnetism To understand both these pictures at the same time!

Discussion is class

Wannier functions

Discussion is class

"Order N"

Quantum Mechanics is not "local"

Eigenstates extend over entire system Interference of states is essential to understanding quantum behavior

Effect in theoretical calculations for materials Exact calculations - Computer time scales exponentially with N = number of electrons In DFT – scales as N³ (The time to diagonalize a matrix)

Is it possible to do accurate calculations with computational time linear in N?

Not covered due to time constraint

Magnetism

Wannier functions – transformation from extended Bloch states to localized orbitals

Linear scaling methods – using Wannier functions

Electric polarization in solids – using Wannier functions (or Berry phases)

Excitations and time dependent density functional theory

Last slide from Lect. 1 as the conclusion!

Goal of Course

Understanding of the role of electrons in condensed matter

• Practical, useful knowledge of methods that are working tools of theorists, experimentalists, and researchers in many fields Without the burden of heavy math, many-body theory,

Appreciation for the real many-body problems presented by electrons in condensed matter

Understanding when to expect correlation to be important The grand challenges of condensed matter physics today

For those who are interested

• Practical, useful knowledge of many-body methods that are becoming more and more important for quantitative predictions and understanding the grand challenges in condensed matter