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Molecular Dynamics with Forces from the Electrons

Iterative methods 
Efficient Plane Wave and Grid Calculations 

Molecular Dynamics with Forces from the Electrons
OUTLINE

Brief outline of classical molecular dynamics (MD), relaxation of 
atom positions

Methods for MD and for minimization

The Car-Parrinello advance 
Unified MD algorithm for nuclei and electrons
“Fictitious dynamics” of the electrons – hard to use 

General forms for iterative algorithms for K-S Eqs.
Easier to understand than CP algorithm
Algorithmic advances – iterative methods, FFT, . . .
Expressions using plane waves

Examples
Liquid carbon, Water, . . . 
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Classical Molecular Dynamics (MD)
Solve Newton’s equations of motion for a complicated system

Typical MD uses forces derived from a force model – force F a simple 
function of positions of neighbors

Simulations with 100’s, 1000’s, 1,000,000’s of atoms can  describe liquids, 
solids at high temperature, phase transitions, diffusion, vibrational 
excitations, thermal behavior, solutions, disordered systems, . . . . 

Typical calculation - many atoms in a cell with periodic boundary 
conditions

Verlet algorithm: advance position of each atom in time steps t
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Relaxation of atomic positions to find stable 
structure

Do NOT want to conserve energy – want to lose energy as fast 
as possible to reach the lowest energy state

This is called “Steepest descent” because the coordinates are displaced 
along the direction of the gradient (F = - dE/dr)

In this algorithm the positions always move in the “downhill” direction.

Problems: As shown in the figure on the next slide, this can be very 
inefficient, walking back and forth toward the minimum – but never
actually arriving at the minimum!

Simplest algorithm: Move atoms along the direction of the force 
by a magnitude proportional to the force.  At sep n, move atoms 
to the positions at the next step,  n+1 

RI
n+1 = RI

n + FI
n
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Steepest Descent

This is called “Steepest descent” because the coordinates are displaced 
along the direction of the gradient (F = - dE/dr)

In this algorithm the positions always move in the “downhill” direction.

Problems: As shown in the figure, this can be very inefficient, walking 
back and forth toward the minimum – but never
actually arriving at the minimum!

Energy contours around the minimum

x Minimum
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Conjugate Gradients  (CG)

In the conjugate gradient method the energy is minimized along the 
direction of displacement – line minimization.
1.  The first direction is along the gradient – same as steepest descent –
except that one finds the minimum along that line.
2.  The second direction is orthogonal – and there is a formula for 
following directions to be “conjugate” to all previous steps!

For a quadratic function of N variables,  CG is guaranteed to reach the 
minimum in N steps. Very efficient for equations that are not quadratic 

Energy contours around the minimum

x Minimum

For quadratic function of
2 variables – exact 
solution in 2 steps
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Usual approach to the Kohn-Sham problem

Self-consistent Equations

Solve equations with many 
cycles of iteration to get 
accurate solution - then
calculate forces

See Chapter 9 – Solving
the Kohn-Sham Eqs. 
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The textbook method for quantum mechanics
-- Diagonalize Matrices

Two numerical problems:
1. Diagonalize matrix – find eigenvalues, vectors
2. Iterate to self-consistency – this is a minimization 
problem – minimize with respect to n(r)

Diagonalization – computer time scales as NB
3

NB
3 is size of basis 

Efficient for small basis – LCAO, etc., for small problems
NOT efficient for large bases – Plane waves!

Iterate to self-consistency –
This is a minimization problem 
Minimize total energy with respect to n(r) 
(Recall - this is how the Kohn-Sham equations were derived!)
The iterations are a numerical way to reach the minimum 
Can use Steepest Descent, Conjugate Gradient , . . . 8



“Ab initio” “First principles” Molecular Dynamics 
and Relaxation of the structure 

Calculate forces from the electrons using the force theorem

In principle, the Kohn-Sham approach gives exact forces

In practice, many examples show the forces are very accurate –
tested by comparison with experiment in simple systems 

The only problem – how to calculate forces on many atoms for 
thousands of time steps 9

The Car-Parrinello Advance
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The Car-Parrinello (CP) Algorithm

Very clever!  But hard to 
understand and to use –
We will emphasize the 
other approaches that were
stimulated by the CP work

Treated briefly
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The Car-Parrinello Unified Equations of Motion

Verlet algorithm: advance position of each atom and the Kohn-
Sham wavefunctions for the electrons in time steps t

Evolves nuclei and electrons conserving energy  --- if the 
constraint of orthonormalization  is applied in a “holonomic”
(energy conserving) manner – SHAKE algorithm 

The reason this is so clever 
is that  energy is conserved
using the Verlet algorithm –
For other methods (see later)
much effort is required to 
conserve energy.

Treated briefly
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Problems with Car-Parrinello Unified Algorithm
Basic problems:

1. Must adjust carefully the fictitious mass” to make 
calculation efficient and avoid errors

2. If states change occupation, this gives extraordinary 
changes in the fictitious KE – energy transfer to the 
fictitious degrees of freedom – can be a very large 
problem in metals

3. Allows solutions, but requires expertise!
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What are the key ideas from Car and Parrinello?
The steps that lead to very general iterative methods

1. The entire Kohn-Sham problem is a way to find the ground state n(r ) and 
Energy  -- Can be solved by minimization methods!

2. The variables in the Kohn-Sham approach are the wavefuntions - i
Iterative minimization methods for the wavefunctions instead of 
diagonalization

3. The K-S hamiltonian H is really the gradient of the energy with respect to 
the wavefunctions – plays the role of a” force” in the iterations
The central step is always the operation H i
FFTs make this operation very efficient 
(All other steps apply with any basis (LCAO, APW, . . .).This step applies 
only to plane waves -- the key reason why plane waves are so efficient!)

4. Need only sum over the occupied states – do not need individual 
eignevectors!
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Alternatives to Car-Parrinello Unified Algorithm
Basic idea: Use the iterative methods (pioneered 

by Car and Parrinello) in the “usual approach”

1. Solve electronic equations by iterative methods
2. Calculate forces on atoms
3. Move atoms
4. Recalculate electrons using the previous density and 

wavefunctions to generate good starting trial vectors
5. Go to step 1 - continue in MD steps

With advances over the years, can be roughly as efficient as 
the original Car-Parrinello unified method

Great advantage – straightforward – easy to understand -no 
major problem for metals – can have efficeint methods the 
find occupied eigenstates or others that do not. 

Can be used with all methods – tight-binding, LCAO, . . . 15

Iterative Algorithms in Planes Waves I
How do we update the wavefunctions in an iteration?

We always consider the wavefunctions expanded in a basis 

i = cij j
and we evolve the values of the coefficients  cij which   The energy is a 
function of the coefficients.  These can be considered as variables in a space 
with dimension (number of occupied states) x (number of basis states) 
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Iterative Algorithms in Planes Waves II
How do we update the wavefunctions in an iteration? Continued
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A constant corresponds to Steepest Descent 
Improved algorithms include Conjugate Gradient, etc. 
(This is the time step term in the CP algorithm)

Lagrange multiplier  for orthonormalization
(There are` other approaches – see text)

ALL iterative methods involve the operation of H on the functions 
which can be done as a matrix multiply

How to carry out the calculations efficiently?
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Iterative Algorithms in Planes Waves III

Do not actually do a matrix multiplication! – Kinetic energy is 
Diagonal in G space --- FFT to real space – Apply potential which is 
diagonal in real space – inverse FFT back to G space 

Update density and hamiltonian to solve self-consistency, update 
coefficients to solve Schrodinger-like  equations for the electrons,
and move the nuclei all in one unified algorithm

H = T + V
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FFTs instead of matrix multiplies

Find coefficients in real space using FFT 
Apply potential which is diagonal in real space 
Inverse FFT back to G space 
Add two parts of wavefunction to get the updated wavefunction 

in G space

Work with each point k separately
In plane waves      T ik,i= m ½ (k+ Gm)2 ck,i(Gm)

and      V k,i = n V(rn)2 ck,i(rn)

No matrices!    Only scalars (diagonal matrices)

The matrix multiply have been accomplished by two FFTs and two scalar
multiplications

MUCH more efficient for large numbers of plane waves!!
.

What is done in actual codes?
ABINIT
“Band-by-Band” CG minimization

Update bands one-by-one with each band forced to be 
orthogonal to all the ones calculated previously

Density updated at the same time – complete minimization 
of energy
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In all cases:
If atoms are moved use the wavefunctions as starting 

point for the next step

VASP
Use a Jacobi-type scheme to find the eigenvector with 

eigenvalue closest to a chosen energy -- with clever 
schemes to be sure all eigenvectors are found (none 
are missing)

SIESTA
Localized orbitals - does not use FFTs
Uses algorithm like CP to update wavefunctions 



What is the starting point in actual codes?

An example is:

Guess a potential (example -sum of atomic potentials)

Get starting eigenfunctions by diagonalizing a small 
matrix (needs to be done only once) 
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Unified MD – nuclei and electronic states
Example of Carbon

Previous ordinary calculations have shown the accuracy of DFT 
for cabon in crystalline diamond and graphite forms?
The Car-Parrinello method makes it possible to apply the same 
theory to liquid carbon, high pressure, . . . .    Predictions . . . 

Radial density distribution                  Snapshot

Galli, Martin, Car, Parrinello22

Unified MD – nuclei and electronic states
Example of Carbon

Electrical properties --- Is liquid carbon a metal or insulator?

Time averaged density of states 
– like a metal

Time averaged electronic 
canductivity  - strong scattering 
leads to conductivity near the 
minimum (Mott) value for metals

Galli, Martin, Car, Parrinello
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Unified MD – nuclei and electronic states
Example of Carbon

Melting of diamond at high pressure  – other phases -
geophysical, planetary physics

Grumbach, Galli, Martin
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Unified MD using forces – nuclei and 
electronic states

Water
Simulation of water – many publications – widely-used GGA 
approximations good – but not good enough – prsent challenge  

Snapshots of simulation of proton transfer – important 
process – study of how electrons are transferred as 
proton moves using localized Wannier functions (later)

Schwegler, Galli
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Simulations of DNA with the SIESTA code
• Machado, Ordejon, Artacho, Sanchez-Portal, Soler (preprint)
• Self-Consistent Local Orbital O(N) Code
• Relaxation - ~15-60 min/step (~ 1 day with diagonalization)

Iso-density surfaces
26

HOMO and LUMO in DNA (SIESTA code)

• Eigenstates found by 
N3 method after 
relaxation

• Could be O(N) 
for each state
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S. Itoh, P. Ordejon, D. A. Drabold and R. M. Martin, Phys Rev B 53, 2132 (1996).
See also C. Xu and G. Scuceria, Chem. Phys. Lett. 262, 219 (1996).
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Example of Relaxation
Prediction of Shapes of Giant Fullerenes

using SIESTA



Collision of C60 Buckyballs on Diamond
Using tight-binding 

Galli and Mauri, PRL  73, 3471 (1994) 29

Deposition of C28 Buckyballs on Diamond
• Simulations with ~ 5000 atoms, TB Hamiltonian from Xu, et al. 

( A. Canning, G.~Galli and J .Kim, Phys.Rev.Lett.  78, 4442 
(1997).
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Conclusions

Ideas for minimization and molecular dynamics are from
classical mechanic and well-known numerical algorithms
Conjugate gradient, . . . 

The Car-Parrinello advance 
The four ideas that transformed the way calculations are done

Minimization
Iteration
FFTs
Need only occupied states for n(r) and Energy

Examples
Liquid carbon, Water, . . . 
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