
1

Instructor: Richard M. Martin
University of Illinois
Stanford University 

Electronic Structure of Condensed Matter
Fudan University - April 2010

Lecture 6 - Part 1: 
Kohn-Sham Calculations for Crystals: Plane Waves 

rmartin42@gmail.com
and

rmartin@illinois.edu

Lecture 6 - Part 1: 
Kohn-Sham Calculations for Crystals: Plane Waves 

OUTLINE
Calculations with Plane Waves

Simple expressions for Bloch states, Schr. Eq. 

Self-consistent Kohn-Sham calculation 
From output eigenvectors - find new density and potential

Example of clever algorithm -- efficient in real space 
Repeat to self-consistency  - determines density, total energy, . . .

Crucial aspects in the theory, algorithms, and actual computation
Accurate “ab initio” pseudopotentials -- later
Fast Fourier Transform (FFT) – introduction of grid in real space
Later we will discuss modern advances in iterative algorithms

Tests for convergence -- MUST be done for calculations to be correct!

Examples
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Recall the General Problem for Kohn-Sham calculations

Each step is simple
in plane waves

Staring point:
Positions, types of atoms
and
Pseudopotential that is calculated separately
and not changed  during the calculation
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Planes Waves
The good thing about plane waves I

It seems that you don’t have to think 

EXCEPT – the cutoff and the pseudopotential

The bad thing about plane waves I

It seems that you don’t have to think 

The good thing about plane waves II
You can go on to other things 
phonons, structures, molecular dynamics, surfaces,  ……
Plane waves can be VERY efficient – new algorithms, FFTs

This is why so many new developments have been done first with 
plane waves – later used with other methods
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But you have to think if you want to get 
the correct answer!



Kohn-Sham Equations in Planes Waves I
One electron Schrodinger-like Eq. – with a periodic potential Veff
See lecture 2.
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The eigenfunctions can be written

Kohn-Sham Equations in Planes Waves II

Straightforward approach – diagonalize – eigenvalues, vectors as 
functions of k
All modern codes use more efficient methods – see later

(NOTE:  Veff depends upon k in modern non-local potentials.  This is a complication 
but it does not change the main points.)

½ (k)2 Veff(G1)         Veff (G2)            Veff (G3 )          . . . 

Veff (G1) ½ (k+G1)2 Veff (G2 – G1 ) Veff (G3 – G2 )    . . . 

Veff (G2)    Veff (G2 – G1 ) ½ (k+G2)2 Veff (G3 – G2 )  . . . 

Veff (G3)    Veff (G3 – G1 )  Veff (G3 – G2 ) ½ (k+G3)2 . . . .

. . . .            . . . .                 . . . .              . . . . 

=

C0

C1

C2

C3

C0

C1

C2

C3

Matrix equation 
(here we have omitted the constants h and m)
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Kohn-Sham Equations in Planes Waves III

These are the most important because the kinetic energy (diagonal of the 
matrix is large for larger G’s.

Why work in Fourier Space? How many G vectors are needed?
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|Gmax|

Ecut = (1/2) Gmax
2

Kohn-Sham Equations in Planes Waves - IV
What is Veff ?   We need  the Fourier components  Veff (G)

Recall the key expressions of the Kohn-Sham approach

Exc[n] is the x-c energy - a functional of n

This is Veff ( r ) for a general density = VKS( r) for the correct n
(in general V depends on spin – not written explicitly here)

From variational principle to minimize energy:

Use FFTs – next slide  

Easy to write in real space because Exc is expressed directly in real space.
Complicated in Fourier space – what do we do?
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Planes Waves and FFTs

Suppose we have the wave functions in reciprocal space ( G ) 
and we want to find n( r ):

1.  FFT ( G ) ( r )  on a grid in real space
2. n( r ) = | ( r ) |2 and       V xc( r ) = Vxc[n]

If we want n( G ):
3.  FFT  n ( r ) n ( G )    and      Vxc( r ) Vxc( G ) 

Using FFTs   - Appendix M - section M.11
Key point: To avoid “aliasing” must perform the FFT on a grid that is 
double size in each direction  - simple reasoning – | (r) |2 has Fourier
components at twice the frequency of those in (r)

In many cases it is convenient to have the option to choose which space 
to  work in -- real or reciprocal

Examples:
Kinetic energy easy in reciprocal space:

2 |k + G|2
Density, Potential energy easy in real space:

n( r ) = | (r) |2 V(r) = Exc/ n(r)
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How does on do the FFT

Set every Fourier component of equal to zero outside the circle
Then n(r ) is given properly. Why?

After getting new V(r ),  find new solution of H = and make zro all 
components outside the sphere!

Despite the huge FFT grid it is still the most efficient approach!

Use a cubic box of double size in each dimension!
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|Gmax|

Ecut = (1/2) Gmax
2

Solving the 
self-consistent
equations
for n and Veff

Analysis is 
very simple
in Fourier
components

Self-Consistency
This must be done in all methods – easiest to describe for plane waves 
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Solving the 
self-consistent
equations
for n and Veff

The approach to self-consistency is most simply described in 
terms of  Fourier components

The most difficulty is for small G  which means large distances.
For large cells there can be “charge sloshing”, where  electrons 
move in the cell (currents In a metal, polarization in an insulator.
This slows down the convergence.  Examples are calculations of 
surfaces – see later.

Self-Consistency
This must be done in all methods – easiest to describe for plane waves 

There are better
techniques from 
numerical analysis
that can be used 
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Tests for convergence

Sufficient number of points in the BZ 

Sufficient number of G vectors – high enough Ecut

Sufficient number of iterations to convergence

Sufficient quality of the pseudopotential (later)
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Test for convergence – Is Ecut large enough?
The total energy always decreases with increased number of plane waves

Why?
But differences may converge faster and my increase or decrease

To
ta

l  
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gy

 

Cutoff Energy for Plane waves Ecut ~ ½ |Gmax|2

Atom
Solid in 
structure 1

Solid in
structure 1
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Test for convergence – enough iterations?
The total energy decreases as the potential and density improves -- Why?
But the algorithm to choose a new potential may not improve the potentail 

The energy is always above the converged result if is evaluated using 
a variational expression.
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Iteration number
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Example – FCC crystals
Ir in the close packed fcc structure

Calculations by Nithaya Chetty

Various sets of Monkhorst-Pack 
“special points”
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Exampl– FCC crystals
Ir in the close packed fcc structure

Calculations by Nithaya Chetty 
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Examples of results – tests on crystals

* NCPP - “ab initio” norm-conserving pseudopotential

*

* All methods agree if they are`done well.
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Examples of results - II

Results improved using improved functionals – next slide
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Transformation of silicon to metallic structures under pressure 
Predictions from LDA
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Examples of results - IIa

Why do GGAs have this effect? – in the diamond structure the density
is more inhomogneous – more homogeneous in the denser structures.
Thus the diamond structure is favored relative to the metallic structures.

Comparison of functionals LDA and various GGAs – See text for details

Note – the energy is lower in all the GGAs than in LDA – the graphs have
been shifted to give energy relative to Si in the diamond structure

Close to 
experiment
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This is LDA.
CA means “Ceperley-Alder”
who did the Quantum Monte 
Carlo calculations on the 
homogeneous electron gas 
that are now the basis for 
the LDA
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Examples of results - III
SiO2 – comparison of functionals

GGA functional leads to the lowest
energy structure that agrees with experiment

GGA

LDA
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21D. R. Hamann, Phys. Rev. Lett., 76, 660, (199d). 

How can surface energies and structures be 
calculated using plane waves?

Make a ”supercell” - large artificial cell – slab plus vacuum 

Many plane waves needed just to make wavefunction in vacuum zero!

But still plane waves are efficient with modern methods!

Two surface s per cell
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Vacuum

Examples of results - IV
Calculations on difficult cases – large cells - isolated systems??   Yes
Smart algorithms – later in course – Chapter 18, App. L and M
Fast computers

Si9H12 Si15H16 Si21H20

molecules

Surface
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Continued in part II
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