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Lecture 6 - Part 1: Planes Waves

Kohn-Sham Calculations for Crystals: Plane Waves The good thing about plane waves |
OUTLINE ) .
Calculations with Plane Waves It seems that you don’t have to think
Simple expressions for Bloch states, Schr. Eq. EXCEPT - the cutoff and the pseudopotential
Self-consistent Kohn-Sham calculation The bad thing about plane waves |
From output eigenvectors - find new density and potential .
Example of clever algorithm - efficient in real space It seems that you don’t have to think
Repeat to self-consistency - determines density, total energy, . . . But you have to think if you want to get

the correct answer!
Crucial aspects in the theory, algorithms, and actual computation

Accurate “ab initio” pseudopotentials -- later The good thing about plane waves Il
Fast Fourier Transform (FFT) — introduction of grid in real space You can go on to other things
Later we will discuss modern advances in iterative algorithms phonons, structures, molecular dynamics, surfaces, ......

Tests for convergence -- MUST be done for calculations to be correct! Plane waves can be VERY efficient — new algorithms, FFTs

This is why so many new developments have been done first with
Examples plane waves — later used with other methods



Kohn-Sham Equations in Planes Waves | Kohn-Sham Equations in Planes Waves lll

One electron Schrodinger-like Eq. — with a periodic potential V Why work in Fourier Space? How many G vectors are needed?
See lecture 2.
Verr() =3 Verp(Gu) expliGyy - 1), (12.6)
"
Z Hy (k)i e (K) = gi(K)ej (k) (12.9)
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g Sl %: P
which has the periodicity of the crystal. This is the Bloch theorem 5 -
Kohn-Sham Equations in Planes Waves I Kohn-Sham Equations in Planes Waves - IV
Matrix equation ‘ What is V. ? We need the Fourier components V. (G) ‘
_ (here we have omitted the constants h and m)
0o il Recall the key expressions of the Kohn-Sham approach
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This is V4 ( r) for a general density = V( r) for the correct n

Straightforward approach — diagonalize - eigenvalues, vectors as (in general V depends on spin — not written explicitly here)
functions of k
All modern codes use more efficient methods — see later

Easy to write in real space because Exc is expressed directly in real space.
Complicated in Fourier space — what do we do?

(NOTE: V.4 depends upon k in modern non-local potentials. This is a complication

but it does not change the main points.) | Use FFTs — next slide
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Planes Waves and FFTs

In many cases it is convenient to have the option to choose which space
to work in -- real or reciprocal

Examples:
Kinetic energy easy in reciprocal space:
A2 — |k + G|2
Density, Potential energy easy in real space:
n(r)=ly (P V(r) = 8E,/dn(r)

Suppose we have the wave functions in reciprocal space y (G)
and we want to find n( r):
1. FFTy(G) — y(r) on agrid in real space
2.n(r)=ly(r)P and V. (r)=V,n]
If we want n( G ):
3. FFT n(r)»n(G) and V,(r)—V,(G)

Using FFTs - Appendix M - section M.11
Key point: To avoid “aliasing” must perform the FFT on a grid that is

double size in each direction - simple reasoning — |y (r) |2 has Fourier
components at twice the frequency of those in  (r)

How does on do the FFT

Use a cubic box of double size in each dimension!

IG

maxl

Ecut = (1/2) G‘max2

Set every Fourier component of y equal to zero outside the circle
Then n(r) is given properly. Why?

After getting new V(r ), find new solution of Hy=ey and make zro all
components outside the sphere!

Despite the huge FFT grid it is still the most efficient approach! 10

This must be done in all methods — easiest to describe for plane waves

Solving the
self-consistent
equations
fornand V

Analysis is
very simple
in Fourier
components

This must be done in all methods — easiest to describe for plane waves

Solving the
self-consistent
equations
fornand V

There are better
techniques from

Self-Consistency

Approach to self-consistency

The plane waves framework affords a simple case in which o discuss the approach o self-

consistency, brin

out issues addressed in Sec. 9.3, The simplest approach - that works

very well in many cases — s linear mixing

m.in

SNG) = e VNG (1 — o)V,

G, (13.5)

Choice of & by trial-and-error is often sufficient since the same value will apply to many
similar systems.

In order 1o go further and analyze the convergence, one can treat the region near conver-
genee where the error in the output density or potential is proportional to the error in the
input potential V. Using the definition of the dielectric function, the error in the output
potential is given by?

SVNG) = Zu(;,{i'rr\l’“‘i(;'a. (13.6)
G

(MNote that this does nor apply to the G = 0 component, which i\ fixed at zero.) It follows

that the error in the output density 5™ G) = SVUNG)G? /47 e%) is also governed h\ 1h._

dielectric function, and the kernel ¥ in Eq. (9.2 1) isrelated by (G, G') = (G, G)G?

In generalthe dielectric function approaches unity for large G or G', however. it may hcmmh

larger than unity for small wavevectors. For example, for Si. e == 12 for small wavevectors,

so that the error in the ontput potential (or densitv) is 12 times farger than the ervov in the
impuat! For a metal, the problem is worse since € diverges.
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Self-Consistency

The plane waves framework affords a simple case in which to discuss the approach to self-
consistency, bringing oul issues addressed in Sec. 9.3, The simplest approach — that works
very well in many cases — is linear mixing —

‘..I:.In‘c! - ‘“_,I.f.-_.-u%(; V(] — a |'|-'I"'mf(i1, (13.5)

Choice of @ by trial-and-error is often sufficient since the same value will apply to many

similar systems.

numerical analysis

that can be used

The approach to self-consistency is most simply described in
terms of Fourier components

The most difficulty is for small G which means large distances.
For large cells there can be “charge sloshing”, where electrons
move in the cell (currents In a metal, polarization in an insulator.
This slows down the convergence. Examples are calculations of
surfaces - see later.
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Tests for convergence

Sufficient number of G vectors — high enough E_,

Sufficient number of points in the BZ

Sufficient number of iterations to convergence

Sufficient quality of the pseudopotential (later)
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Test for convergence - Is E_; large enough?

The total energy always decreases with increased number of plane waves
Why?
But differences may converge faster and my increase or decrease

>
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g Atom
~ Solid in
/ structure 1
{ { | | solid in
structure 1

Cutoff Energy for Plane waves E_,, ~ "2 |G, 1

Test for convergence — enough iterations?

The total energy decreases as the potential and density improves -- Why?
But the algorithm to choose a new potential may not improve the potentail

The energy is always above the converged result if is evaluated using
a variational expression.

Total Energy

Iteration number
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Example — FCC crystals

Ir in the close packed fcc structure
Calculations by Nithaya Chetty

Various sets of Monkhorst-Pack
“special points” Fnergy vs # k points
Ir in FOU sorucmre
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Exampl- FCC crystals

Ir in the close packed fcc structure
Calculations by Nithaya Chetty

Energy vs lattice constant

Ir in FCC structure

-20.385
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Examples of results — tests on crystals

Table 13.1. Calculated properties of selected ¢

sstals using the local density

approximation and various methods that involve plane waves: norm-conserving
pseudopotentials (NCPPs), projector augmented waves (PAWSs), “ultrasoft”
pseudopotentials (USPPs) and linearized APWs (Ch. 17).

C Si CaF, bee Fe
Method a B a B a B a B m
NCPP 3.54 460 539 U 5.21 o 2.75° 226°
*PAW" 3.54 460 5.38 98 5.34 100

PAW? 3.54 460 540 95 5.34 101 275 247 2.00
USPP” 3.54 461 540 95 5.54 101 272 237 2.08
LAPWT 3.54 470 541 9% 5.33 1o 272 2457 2047
EXPY 3.56 443 543 u9 545 B5-490 2877 1724 2127

* All methods agree if they are’done well.

* NCPP - “ab initio” norm-conserving pseudopotential
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Examples of results - Il

Transformation of silicon to metallic structures under pressure

Predictions from LDA
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Results improved using improved functionals — next slide
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Examples of results - lla

Comparison of functionals LDA and various GGAs — See text for details
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Relative volume, v/,

1.1

This is LDA.

CA means “Ceperley-Alder”
who did the Quantum Monte
Carlo calculations on the
homogeneous electron gas
that are now the basis for
the LDA

Note — the energy is lower in all the GGAs than in LDA - the graphs have
been shifted to give energy relative to Si in the diamond structure

Why do GGAs have this effect? — in the diamond structure the density
is more inhomogneous — more homogeneous in the denser structures.
Thus the diamond structure is favored relative to the metallic structures.



Examples of results - i Examples of results - IV

SiO, — comparison of functionals Calculations on difficult cases — large cells - isolated systems?? Yes
Smart algorithms — later in course — Chapter 18, App. L and M
Fast computers
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GGA functional leads to the lowest
energy structure that agrees with experiment

D. R. Hamann, Phys. Rev. Lett., 76, 660, (199d). 21 23

How can surface energies and structures be
calculated using plane waves?

Make a ”"supercell” - large artificial cell — slab plus vacuum

Continued in part Il

Two surface s per cell

Vacuum

Ce| Oe Oe
Ce| Oe Oe
Ce| Oe Oe
e Oe Oe
e O Oe
e O Oe

Many plane waves needed just to make wavefunction in vacuum zero!

But still plane waves are efficient with modern methods! 22 24



