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Understanding electrons in solids
The three types of descriptions

Understanding electrons in solids 
The three basic methods 
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The three ideas and three methods
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• LCAO - Representation of the eigenfunctions as linear combination 
of atomic-ilke orbitals 
• The dominant functions having the same s-p-d character as in 

the atom  --- additional radial functions and higher angular 
momentum to improve the description

• Good way to understand bands – get simple approximations 

• Plane waves - Representation of the eigenfunctions in terms 
of a general independent of the atoms
• Good way to describe nearly free electron bands
• Advantage for computation – very simple algorithms –

the same for all problems
• BUT one must use pseudopotentials that put in the atoms

• Augmented methods – expansion in spherical harmonics 
near the nucleus – smooth functions (e.g., plane waves) 
between the atoms
• The “best of both worlds” - atomic-like and band-like 
• Good way to describe localized states like d electrons 
• General algorithms, but difficult

Local atomic-like orbitals (LCAOs) 
The good thing about LCAOs

They are atomic-like
Incorporate the fact that states are atomic-like near each atom

The bad thing about LCAOs

They are atomic-like

The good thing about LCAOs
A very small basis is sufficient to give a semi-quantitative 

understanding of electronic states
A larger (but still small) carefully-chosen basis is very efficient for

accurate calculations of electronic states
The obvious basis for a molecule where the eigenstates are localized to 
the molecule - widely used in chemistry
Gaussians are not atomic-like but they are advantageous because all 
integrals are analytic

The “tail” of an orbital does not have the character of the 
molecular or solid state
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Independent-Particle Eqs in Localized Bases

The problem separates into two parts:
The Schrodinger equation is determined by the matrix elements
The actual form in real space is determined  by the functions m(r- Rm)

Any state can be expressed as a linear combination of basis orbitals

i = m cim m(r- Rm) (LCAO)

Matrix elements Hmm’ = < m|H| m’>  = m( r - Rm) H m’ ( r – Rm’)

Smm’ = < m | m’>  = m( r - Rm) m’ ( r – Rm’)

Leads to matrix equation: m’ (Hmm’ – i Smm’ ) cim’ =  cim

Localized functions
are not orthogonal
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Expressions in a crystal

In a crystal, all matrix elements between states separated by T:

The following slides have many details.  The parts that are most important 
are the secular equations on the previous slide, the form of the matrix 
elements.  The Slater-Koster form is perhaps the simplest way in the entire 
course  to understand bands qualitatively, and it will be used in exercises. 5

Expressions in a crystal - II

Thus the matrix elements and Schrodinger Eq can be written:
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Atomic-like functions

Schematic pictures 
of overlaps 

and

2-center  matrix elements

ppπ

ssσ spσ sdσ

ppσ

pdσ pdπ

ddσ ddπ ddd
The figures are very useful 
for understanding the 
matrix elements
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Two-center Matrix elements

2-center matrix elements can always be written in terms of direction 
cosines – prove by expressing matrix elements as sums of the basic 
forms on previous slide
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R
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x
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z
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spx

R

px pz

Overlap

Kinetic energy
-1/2 m( r - Rm) m’ ( r – Rm’)

Potential matrix elements in general more complicated – lower symmetry 
- often called “3-center”

Each matrix element can be expressed as simple functions of the angles 
multiplied by a function of the distance between the centers – next slide
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2-center matrix elements can always be written in terms of direction 
cosines – prove by expressing matrix elements as sums of the basic 
forms on previous slide
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Kinetic energy
-1/2 m( r - Rm) m’ ( r – Rm’)

Two-center Matrix elements II

9

2-center matrix elements for H and S have the simple form

Potential matrix elements in general more complicated – lower symmetry 
- often called “3-center”

Each matrix element can be expressed as simple functions of the angles 
multiplied by a function of the distance between the centers

Functions of distance |R|

Two-center Matrix elements III
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Slater-Koster Formulation – Tight-binding
If all matrix elements are approximated as having the 2-center form, then
the hamiltonian and overlaps are completely determined by the angular 
momenta considered and forms of the matrix elements as a function of 
distance

Very useful !

Tight-binding approximation – consider matrix elements as parameters –
fit to experiment or to a theoretical calculation

m’ (Hmm’ – i Smm’ ) cim’ =  cim

In a crystal

with

etc.
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Examples of results - I
Silicon – fitted scheme with 5 functions per atom (s, 3p, s*)
(where s* denotes a second s state) i.e., a 10x10 matrix.)
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If the smallest possible basis is used (s,p with 4 states per atom),  the 
conduction band will not have the correct shape with the minimum on the line 
(called ) between and X. (Fig. 14.6 calculated by N. Romero
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Examples of results - II
Nickel – simple Harrison scheme with 9 functions per atom (s, 3p, 5d)
Note the 5  narrow d bands and the one s band that crosses the d bands.
The Fermi energy is at E=0. 
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(Fig. 14.7 calculated by N. Romero
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Simple examples – square lattice

Square lattice – s band – assume states are orthonormal and the
only non-zero matrix element of H is for nearest-neighbors 
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Fermi Surface for one electron per site - a half-filled band

The basic model the metallic bands near the Fermi energy
in Hi-Tc superconductors
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Simple examples - graphene

bands of graphene (single sheet of graphite)

states form strong s-p bonds in the plane

states are perpendicular to plane – interaction of two states in the same
plane is the same in all direction – i.e., s-like in the plane 

See next slide

a1

a2

τ2

Two atoms per cell
- both carbon
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Simple examples - graphene

bands of graphene  -- tight-binding nearest neighbor matrix element  t

states are perpendicular to plane – interaction of two states in the same
plane is the same in all direction – i.e., s-like in the plane 
– assume states are orthonormal and the only non-zero matrix element of 
H is for nearest-neighbors

With this assumption there are only matrix elements between connecting
states on white and black atoms

Side view
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t Not in a line – Front - Back 
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Simple examples – graphene continued

bands of graphene (single sheet of graphite)

Only matrix elements between white and black atoms
a1

a2

τ2
Two atoms per cell - both carbon

Expressions for bands Matrix element t
for each bond
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Exercise in homework
Work out the matrix elements and 
the bands yourself
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a1

a2

τ2
The result should be given for k = (kx,ky) in the plane -
but this depends upon the definition of the x and y 
directions.  For the exercise take the
x and y directions as shown in the figure. 

If you choose to use the formulas in the book,
You should know that there is a mistake in one edition 
of the book – you need to work it out yourself!

x

y

Simple examples – graphene continued II
bands of graphene – repeating expression in tight binding approx.

Brillouin Zone

Two bands since there are
two sates  per cell --- but 
the bands touch at the six points 

labeled K

Zero gap.  Graphene has “Fermi points”
(instead of a normal metal Fermi surface)
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Graphene planes and “ribbons”

Infinite plane – Dirac  points
where bands touch with linear
band slopes at points 

Two examples of “ribbons” cut from
graphene sheets – bands for e(k) in
one dimension

Tight-binding calculations from
http://en.wikipedia.org/wiki/Graphene#Electronic_properties



Carbon nanotubes
Rolled up sheets of graphene – bands form states near Fermi energy

Vector L indicates points that are brought together in rolling

Bands depend on how sheet is rolled
Can be chiral, non-chiral, metals, insulators, …..

c

Tube
axis

Tube axis

6a1

a2

(6,1)

Model: bands are the same as in graphene – the only difference
is that the only allowed states are those that satisfy the boundary 
condition for the tube (r+L) = (r)
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Carbon nanotubes – two examples

Rolled up sheets of graphene – bands form states near Fermi energy

“Zig-zag” zero-gap metal or 
narrow gap semiconductor
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“Armchair” metallic because states
allowed by rolled tube always include 
the zero-gap states

Works very well for large diameter tubes 
– there are important corrections for very small diameter tubes 22

Accurate Kohn-Sham Calculations

The LCAO method can be very accurate if a large basis with 
many  atom-centered states are used 

The main computational difficulties are:

- Calculation of the density and generation of the new 
potential in the iterations to the self-consistent solution
- Calculation of the matrix elements

Useful codes: 

SIESTA – very efficient – designed for solids
- includes molecular dynamics, etc.

Many Gaussian based codes designed for molecules –
GAUSSIAN,  . . .
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Why are Gaussians so useful?
The needed integrals always have the form

Im m’ m’’ = < m |O m’’ | m’>  = m( r - Rm) O m’’ ( r – Rm’’) | 
m’ ( r – Rm’) 

These integrals can easily be evaluated for gaussians multiplied by any 
polynomial.

The reason is simple: The product of two gaussians is a gaussian

exp(–a (x – XA)2 exp(–b (x – XB)2

=   g exp(–c (x – XC)2

where it is straightforward to 
derive the expressions for 
g, c, and XC
(see Sec. 15.2) 

ACB



Example of Gaussian basis calculation

Gaussian basis code by Rohlfing  (Fig 15.2 in text) has been applied to the
bands of many materials – excellent agreement with plane waves

Here is an example of states at a surface of Ge.   This shows both LDA 
results (the famous zero gap) and “GW” calculations (discussed later) done 
with the same basis.
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Au “wires” on Si (557) surface
SIESTA local orbital calculation (numerical modified atomic orbitals) 

Most stable structure predicted from theory
in very good agreement with experiment done later

[I. K. Robinson, et al., PRL 88, 096104 (2002)]

Au atom 

Side view of surface 

Si adatom 
Steps on the surface

After the finding structure, plane wave calculations were used to calculate
electronic bands (very close to bands from SIESTA ) – Novel large coupling 
to the electron spin effect predicted – PRL 93, 146803 (2004) 

Conclusions
Atomic-like (LCAO) bases are very useful

A very small number of states is sufficient to 
understand important aspects of bands

Tight binding approximations leads to very simple 
algebra and description of bands 

Examples – Si, Ni, graphene, nanotubes, ….

Useful codes available ( SIESTA (free) , GAUSSIAN, 
GAMESS free) , 

Simple code - TBPW from my group, free
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