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Lecture 2: Periodic Crystals Crystals
Only key ideas and figures are given here for use in class
Material is in any basic text on solid state physics.
It is also in the text, Chapter 4, which is essentially the same © 0 0 0O o 0 0 00 © 0000
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Reciprocal Lattice Types and Positions of atoms
Brillouin Zone (BZ)
Bloch Theorem
Bloch Theorem for excitations in crystals 00 00 o090
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Proof by Fourier Expansion (later) O 0 0O 0 O 0 0 0 0.0 .C). .C). .C).
Applies to any excitations - phonons, electrons, etc. O: O: O: O: O: o 8. 8. 8’ 8.8 00 600 00
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Qualitative discussion of Bloch functions. Zone center, Zone boundary

The first qualitative estimates of band widths in solids



Two Dimensional Crystals

Crystalline layers with >1 atom basis
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Crystal = Lattice + Basis
/ CuO, Layer Square Lattice CuO, Basis

’ Called the Bravais Lattice ‘

* One CuO, layer in the High Tc

. Sqlgare lattic

upercondquctors .
* One basis unit on each site

(Easier to draw in 2 dimensions — 3 dimensions later)
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Lattices and Translations alline layers with >1 atom basis
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One possible Primitive Cell Another choice Wigner-Seitz Cell -- Unique
o . . Basis
2 C atoms
* The entire infinite lattice is specified by 2 primitive Honeycomb Lattice Hexagonal Lattice or BN pair
vectors a, and a, (also a; in 3-d) (graphene or BN layer)
* T(n,n,...)=n, a; +n,a, (+n; a; in 3-d), . "
where the n's are integers * A single layer of graphitic carbon
All primitive cells have same area (volume) (graphene)
Wigner Seitz Cell,is most compact, highest symmetry cell
possible
* Also same rules in 3 dimensions 6 * A single layer of hexagonal boron nitride



Three Dimensional Lattices

a3

Simple Orthorhombic Bravais Lattice Hexagonal Bravais Lattice

angles 90 degrees, 3 lengths different
2 lengths same
3 lengths same

a, different from a,, a, by symmetry
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Length of each side - a Cublc Lattlces
Simple Cubic Body Centered Cubic (BCC)
Primitive lattice vectors Conventional Cell with 2 atoms at positions
a,=(1,0,0)a (000), (1/2,1/2,1/2) a
2,=(0,1,0)a Primitive cell is one atom
2;=(00,1)a 8 neighbors

One atom per cell at position (0,0,0)
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Cubic Lattices

Length of each side - a

Simple Cubic Face Centered Cubic (FCC)

Primiti"flatﬁce vectors Conventional Cell with 4 atoms at positions
A= ((1)"1)’8) a (000), (0,1/2,1/2), (1/2,0,1/2), (1/2,1/2,0)a
:2 _ 20’0’1;2 Primitive cell is one atom
3 sVs . .
One atom per cell at position (0,0,0) 12 neighbors (cubic close-packed)
1
Face Centered Cubic
~
>
a, / - ' .\ \
_®
X
~_— N—
One Primitive Cell Wigner-Seitz Cell
Primitive lattice vectors
a,=(1/2,1/2,0)a
a,=(1/2,0,1/2) a
a,=(0,1/2,12) a
One atom per cell at position (0,0,0) 12



Body Centered Cubic

One Primitive Cell Wigner-Seitz Cell

Primitive lattice vectors
a, = (1/2,1/2,-172) a
a,=(1/2,-1/2,1/2) a
a;=(-1/2,1/2,12) a
One atom per cell at position (0,0,0) 13

Cubic crystals with a basis

——
\J)//i/ ZnS Structure with

NaCl Structure with Face Centered Cubic Bravais Lattice

Face Centered Cubic Bravais Lattice  C, Si, Ge form diamond structure with
only one type of atom
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NaCl Strmictire

T(

NaCl Structure with
Face Centered Cubic Bravais Lattice
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CsCl Structure

CsCl Structure
Simple Cubic Bravais Lattice

From http://www.ilpi.com/inorganic/structures/cscl/index.html
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Reciprocal lattice and Brillouin zone (BZ)

The set of vectors q that satisfy the condition q @ a, =27 x integer form a lattice

The set of Fourier components q that satisfy this condition is the “reciprocal lattice.” If
we define the vectors by, i = 1, d that are reciprocal to the primitive translations a;, i.e.

b; - a; = 275, 4.9)

the only non-zero Fourier components of f(r) are for q = G, where the G vectors are a
Structure depends upon radii of the two ions lattice of points in reciprocal space defined by,
— large cations are close packed

. . where the m;, i = 1,
. . function can be written

Closed-Shell Binding
Close packed

Gimy,ma,...)=mby +maby+ ..., (4.10)

are integers. For each G, the Fourier transform of the periodic

fiG= L dr f(r)expliG - r). (4.11)
Qeell S

This is the definition of the reciprocal lattice — examples on next slide

Covalent Binding Metallic Binding
Open Structures Close packed 17
Reciprocal lattice and Brillouin zone (BZ) Brillouin Zone — example in 2 dimensions
Fourier Components of a periodic f(r) function in a crystal o ' )
Lattice in real space e Reciprocal lattice

The Fourier transform is defined to be ° ® ™

1
flg) = f dr f(r)expliq - ), “.7) o ] 2 b2y L4

chysta] Derysaa 4 ! -
. 1
which, for periodic functions, can be written: ® : e
1 ® 3 o b,
_ d iqr+ Ty, na,.) - ‘ y Te~s
f(q) QW_"SIJI ﬂl,ﬂzz,._ [chn ' f(r)c : .‘ L ]
Y T L f dr f(r)e''. (48) ° ° ° / ° °

af. Qe Jaw .

The sum over all lattice points in/the middle line vanishes for all q except those for which Wigner—Seitz cell In 2-dimensions Brillouin zone Y
for afl translations T. Since T(n;.n3,...) is a sum of b,ea, =2n, b, e a,=0 Wigner-Sietz cell
integer multiples of the primitjve translations a;, it follows that q - a; = 27 >\t'm¢=g(’r. b,e®a, =0, b,® a,=2n of reciprocal lattice
The sum vanishes unless q@T = 2 x integer for all T -- Thus qea, =27 x integer Physical importance of BZ — For vectors k on the boundary of the BZ,

k="' G so that |k| = |k-G|. This is the condition for Bragg scattering, which

This leads to the definition of the reciprocal lattice — next slide occurs only for k on the surface of the BZ.




Reciprocal lattices - examples for cubic lattices Diffraction and the
Brillouin Zone

simple cubic  simple hex.  fcc bee
Primitive translation a;= (1,0,0) (1,0,0) (0.4.4) (-%33)
im0 () (o) 6o
lattice constant a a3= (0,0.1) 0.0.5) (339 (G.3.-3) e Brillouin Zone - (BZ) -

' ' x the Wigner-Seitz cell of

_ o the reciprocal lattice

simple cubic  simple hex. fee bee
Primitive translation 1, = (1,0,0) (L-25.0) a.1,-n ©11, )
vectors of reciprocal I . °
lattice in units of 2/a %= (.10 (0, 3.0) (-1 (1,01, * Formed by perpendicular

h= 0ob - O8s  CLLD GLO bisectors of G vectors
otated Fcc, bee are reciprocal
to one another
Cheek it your self — Do the vectors obey the conditions? * Special Role of Brillouin Zone
21 — Diffraction occurs only for k on =
Geometric Construction of Example of FCC

Diffraction Conditions

[
* Recall k;, -k, =G
and |kin| = |kout| Brillouin Zone
Wigner-Seitz
C ‘e ¢ ZIS(/GaAs, ) ( ceﬁ for the
* onsequence ;)f condition ® (Diamond if the two atoms reciprocal
|12k G[=G 1 are the same element) Reciprocal lattice — lattice)
fce lattice bee
» The vector k;,, (and k) lies along the per Basis: Zn at (0,0,0)
Perpindicular bisector of a G vector S at (Ya, 4, Y4)
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N R. Martin - preschool - crystals 24
One examnle is shown



Conclusions

Crystal structure = lattice + basis

— Bravais lattice of translations — multiples of the primitive
translations

— Basis specifies the atoms that are associated with each lattice point

Reciprocal lattice

— Set of vectors G in reciprocal space that are the Fourier components
of periodic functions

Brillouin zone (BZ)
— Wigner-Seitz cell of the reciprocal lattice
— The surface of the BZ are the points where Bragg scattering occurs
— Will be important in the understanding of electron states

Often used examples
— Zinc-blende (diamond) — fcc lattice - basis of 2 atoms
— Reciprocal lattice is bee

R. Martin - preschool - crystals 25

Electronic Structure of Condensed Matter
Fudan University - April 2010

Lecture 2
Crystals, the Bloch Theorem, Bands
Understanding using different points of view

Instructor: Richard M. Martin
University of Illinois
Stanford University

RMartin@illinois.edu

26

Schrodinger Equation
» Basic equation of Quantum Mechanics

[- (A%2m)V2 + V(r)] ¥ (r) = E ¥ (r)

where
m = mass of particle
V(r) = potential energy at point r
V2 = (d?/dx? + d?/dy? + d?/dz?)
E = eigenvalue = energy of quantum state
Y (r) = wavefunction
n(r) =| ¥ (r)|?> = probability density

» Key Point for electrons in a crystal: The potential

V(r) has the periodicity of the crystal

Schrodinger Equation
» How can we solve the Schrodinger Eq.

[- ("2/2m)VZ +V(r) ] ¥ () = E ¥ (r)

where V(r) has the periodicity of the crystal?

27

 This is the key practical computational problem for the

methods used in the electronic structure school

» Here we consider simple cases as an introduction
One dimension

28



Consider 1 dimensional example
« If the electrons can move freely on a line from 0 to L
(with no potential),

0 L

» Schrodinger Eq. In 1d with V =0
- (h22m) d%/dx2 ¥(x) = E ¥(x)

+ If we have periodic boundary conditions (V¥ (0) = ¥ (L))
then the solution is:

P(x) = L2 exp( ikx), k= +m (2n/L), m = 0,1,..
E(k) = (h2/2m) | k |2
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Electrons on a line

» For electrons in a box, the energy is just the kinetic energy
E (k) = (h?2m) k?

+ Values of k fixed by the box, k= + m (2n/L), m=0, 1, ...

E Empty]
\; states /
Er T A
E\ TV :
| states/ |
1 1
1 1
ke k ke

» Pauli Principle - The lowest energy state is for electrons is to fill
the lowest states up to the Fermi energy E. and Fermi
momentum k. — two electrons (spin up and down) in each state

* This is a metal — the electrons can conduct electricity
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Electrons on a line with potential V(x)
« What happens if there is a potential V(x) that has the
periodicity a of the crystal?

* An electron wave with wavevector k can suffer Bragg
diffraction to k + G, with G any reciprocal lattice vector

Bragg Diffraction
i occurs at
BZ boundary

State with k = nt/a
diffracts to k = - t/a

\ i and vice versa
: ; k

—}cla 0 n/a
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Interpretation of Standing waves at
Brillouin Zone boundary

» Bragg scattering at k = r/a leads to the two possible

standing waves. Each is a combination of the right
and left going waves exp( i nx/a) and exp(-i nx/a):

YH(x) = exp( i mx/a) + exp(-i nx/a) = 2 cos(nx/a)
Y-(x) = exp( i mx/a) - exp(-i nx/a) = 2i sin(nx/a),

The density of electrons for each standing wave is:
|'¥+(x)|? = 4 cos?(nx/a)

|¥-(x)|? = 4 sin?(nx/a)

32



wavefunctions and energi

Interpretation of Standing waves at

Brillouin Zone boundary

|[¥*(x)|? - high density at atoms
low energy

\. / o
2 . low density at atoms
high energy

Atoms - attract)ive\

a (negative) potential

-
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Electrons on a line with a periodic V(x)
« Bands changed greatly only at zone boundary
Standing wave at zone boundary

Energy gap -- energies at which no waves can travel
through crystal

. Standing wave with low
i density at atom positions

/ --high energy
_.Energy
T Gap

Energy

Standing wave with high
density at atom positions
--low energy

Far from BZ boundr;lry

approach free electron values
if the potentiFI is weak

—mla 0 r/a 9

Independent electrons — Plane wave methods (1)

| General theory -- From book —or Solid State Physics text |
The independent-particle Schrodinger equation

The eigenstates of any independent particle Schriodinger-like equation in which each elec-
tron moves in an effective potential ‘i{-ff(rj,l such as the Kohn—Sham equations, satisfy the
eigenvalue equation

. I
H, ()i (r) = [—ﬁvz + chf(r)] Yri(r) = e (r). (12.1)

Using the fact that any periodic function can be expanded in the complete set

of Fourier components, an eigenfunction can be written
1
Ui =Y g x —=explig-m) =Y ciq x |q). (12.2)
2 7 2

where ¢; , are the expansion coefficients of the wavefunction in the basis of orthonormal
plane waves |q) satisfying

. 1 . -
iq'lqy = = Ldr exp(—iq’ - r)expliq-r) =g - (12.3)

Plane wave basis — always possible — it is Fourier analysis

Independent electrons — Plane wave methods (2)

Expression for the Schr. Eq. in a plane wave basis

Inserting (12.2) into (12.1), multiplying from the left by {q'| and integrating as in (12.3)
leads to the Schriddinger equation in Fourier space

D | Herrla)cig = &1 Y_{q la)ciq = sicig- (12.4)

q a

Kinetic energy is simple — easy to differentiate a plane wave!

The matrix element of the kinetic energy operator is simply

’ hz 2 hz 2 1 2
(@ = 5= V1) = 5—la "800 = 3191 5nar- (12.5)
; 2

2m,

Plane wave are eigenstates of K.E. — The only thing that mixes
the plane waves is the potential

35
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Independent electrons — Plane wave methods (3)

Fourier Components of the potential in a crystal

. For a crystal, the potential Vesr(r) is

periodic and can be expressed as a sum of Fourier components (see Egs. (4.7) to (4.11))
Veip(r) =Y Verp(Gm) exp(iGan - 1), (12.6)
m
where G, are the reciprocal lattice vectors, and
1
Verr(G) = —f Verp(r) exp(—iG - r)dr, (12.7)
Qeell Jou
with €2 the volume of the primitive cell. Thus the matrix elements of the potential

(ql Vt’fj‘q} = Z Vejf((:m )aq’fq.(:m ) (12.8)
m

are non-zero only if q and q" differ by some reciprocal lattice vector G,.

Key point: The potential only couples waves q and q' if they
differ by a reciprocal lattice vector --q—q' =G,

Independent electrons — Plane wave methods (4)

The hamiltonian matrix in a plane wave basis

k is defined to be in a primitive cell of
the reciprocal lattice around k =0

Finally, if we (k’ﬁn% q=k+ Gpandq =k + Gp ﬁwhich differ by a reciprocal lattice
vector Gyr = Gy, — Gyyy), then the Schridinger equation for any given k can be written as
the matrix equation

3" Hy k)i (k) = :(K)C () (12.9)

m'

where? ’ Matrix eigenvalue equation

2

. R )
Huym(k) = (K4 Gp |Hepr |k + Go) = W|]‘ + G |“8mant + Verr(Gm — Gue). (12.10)
“iite

Note that k only appears in the kinetic energy!
(Actually V depends on k in pseudopotentials)

Key point: Each k is independent. The problem can be solved
at each k-point separately

37
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Bloch theorem

We have found that each eigenstate has a definite k and it is composed
of Fourier components k + G where G is any reciprocal lattice vector.
Therefore, y can always be written y, = exp(ikr) u,(r ) where u is periodic

1. The Bloch theorem - -

* 1. The Bloch theorem. Each eigenfunction of the Schridinger equation, (12.9), for a given

*

kis given by (12.2), with the sum over q restricted to q = k + G, which can be written

1 |
Vi k(r) = Zc‘f.m(kJ x —=-exp(i(k + Gp) - r) = exp(ik - r)—==uwuik(r), (12.11)

i N{+) + Neatt

where £2 = N2 and

1
i g(r) = —— cim(KyexpliGy, - 1), (12.12
ik(r) m; im(K)exp(iGy, - 1) )

which has the periodicity of the crystal. This is the Bloch theorem

2. The solutions form bands of eigenvalues g,(k)

3. kis conserved — it is called crystal momentum which is like real momentum
except that it is only defined in the BZ — the solutions are periodic in k,
i.e., the same for k and k+G for any reciprocal lattice vector G

39

Role of the Brillouin Zone (BZ)

The BZ is the Wigner Seitz cell of the reciprocal lattice --
the most compact primitive cell

The BZ is unique among all primitive cells because its boundaries are the
bisecting planes of the G vectors where Bragg scattering occurs (see Sec. 4.2).
Inside the Brillouin zone there are no such boundaries:

the bands must be continuous and analytic inside the zone.

The boundaries are of special interest since every boundary point is a k vector
for which Bragg scattering can occur; this leads to special features, such as
zero group velocities due to Bragg scattering at the BZ boundary

40



Brillouin Zone - Examples Examples of bands in fcc crystals

Electron bands, phonon bands in same BZ

BZ for FCC
Simple cubic real-space lattice

z

GaAs — phonons — lattice vibrations .
Germanium - electrons

K described by phonons with k vectors in the BZ
A/X .
o<W — 200 10
E 0 %a« I/Arw“wx:‘—*-g:«m:“ _gettataes 4:»
@ Z g 200} % :::,m% s
A H E g
(c) A\ o 100 Tty z M% E’
L
r T ! Ky OF K X T L X w L
z
BCC M K
X L A r A x
Useful Web site hexagonal
BZ with labels for all 230 space groups
http://www.cryst.ehu.es/cryst/get_kvec.html
Electron Excitations - Bands Nature of the Bloch functions
* Understood since the 1920’s - independent electron theories Zone center Atomic-like near each nucleus
predict that electrons form bands of allowed eigenvalues, with 7 o

forbidden gaps k=0 ’//W y A /H\
*Lowest energy state is for bands filled to the Fermi level (exclusion principle) /\ M M /\

* Established by experimentally for states near the Fermi energy

Zone boundary-.

L] £ \,
«| Silicon Extra added electrons k=mn/a /\ /\ /\ /\
o8 o in bottom of

Empty Bands /_/ K’\ L~ conduction band . \/ \/
B PN i Fig. 4.11

Gap o4
. N 7 ~ Missing electrons

Filled Bands * (holes) go in top of Just by inspection of these two figures, one can see a way to make
N \‘ =] valence band qualitative (often quantitative!) estimates about energy bands
L]

in solids! .

- x : - x Can you see the idea?

117, 2006 42



Estimates of band widths in solids
-- using only information from atoms! --
Calculation on atom
with different
boundary conditions

Atomic-like near each nucleus

AU A
i(;n;/::ounda%/ A /\ /\/
Fig. 4.11 Tvu\/

r, =% the nearest neighbor distance in the solid

Zone center
k=0

" Fig. 10.3

The change in energy of the atomic state with boundary conditions
(y =0 at the r =r,, or dy/dr =0 at r=r, ) gives an estimate of the band
width in the solid!

This idea is close to the original work of Wigner and Seitz in 1933
and modern KKR and LMTO work! More later in course.

Example of bands plotted along lines in the BZ

Two fcc crystals

\‘ 0.2 % =~
E 4 /‘\\ vl i
00 J
2
-0.2
=
4 <
3 -04
5 2
w
6 -06 Gahs
7 | |
-0.8 1
8 \ ]
1.0
9 C T X UK T
GaAs
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Integrals over the BZ

Integrated quantities like the density and the total energy are
always sums over all the occupied states. In a crystal this means
a sum over bands and an integral over the BZ

Integrals in k space For many properties such as the counting of ¢lectrons in bands,
total energies, etc., it is essential to integrate over k throughout the BZ. As pointed out
in Sec. 4.3, an intrinsic property of a crystal expressed “per unit cell” is an average over
k. i.e. a sum over the function evaluated at points k divided by the number of values N,
which in the limit is an integral. For a function f;(k), where i denotes the discrete band
index, the average value is

- 1 cenl /‘
i =0 (k) - —— dk fi(k), (12.14)
fi=x ;f |k f

2m) |

where £ is the volume of a primitive cell in real space and (QJT)J/QR“ is the volume
of the BZ. Specific algorithms for integration over the BZ are described in Sec. 4.6.

NOT in a standard "text — but needed for any total quantity-

energy, density, etc. are sums over all occupied states — in
Integrals over the BZ

Special k-points

“Special k-points” denotes a regular grid of point in the BZ chosen to
be optimal for integrating a smooth periodic function

This is useful in crystals because the eigenvalues €, and eigenfunctions

\uk(r) vary smoothly in the BZ for each band. Thus special points are
useful for integrals such as the sum of eigenvalues of the occupied
bands and the electron density.

Examples of special points in the BZ in units of w/a
34 -1/4 1/4 3/4
¥ X X ¥ |

| (4] N | [4) |

-1 0 1

Key points: Any function g(k) that can be expended in Fourier components
up to 37/a are integrated exactly by the sum at these points.
Only two points need to be calculated since k and —k are conjugate solutions.

47
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Special k-points

“Special k-points” are even more useful in higher dimensions

Example - 2 dimensions Y, %,
X

‘@,%

Key points: Only 2 points are needed in 2 dimensions to get the same
accuracy as in one dimension described before
This also works in 3-d — two points can give an accurate result for the integral!

Conclusions

* Plane waves solution for electronic states in crystals

— Hmiltoian matrix given simply in terms involving Fourier
components of the potential

* Bloch theorem — proved easily using plane waves
— Yy (r)=exp(ikr)U,(r ) where u,(r ) is periodic
* Electron bands

— Plotted along bands in the BZ

— Interpretation in terms of atomic-like states
(LCAO defined more carefully later)

* Integration over the BZ to find total properties
— Total energy, electron density, forces, .. .
— Special k points
* These are the parts that enable actual Kohn-Sham
calculations




