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Lecture 2
Crystals, the Bloch Theorem, Bands

Understanding using different points of view

Lecture 2:  Periodic Crystals

OUTLINE
Crystal Structure  =   Lattice  +   Basis 

Only key ideas and figures are given here for use in class
Material is in any basic text on solid state physics.

It is also in the text, Chapter 4, which is essentially the same

Translation symmetry 
Reciprocal Lattice 
Brillouin Zone (BZ)
Bloch Theorem
……

Types and Positions of atoms

Bloch Theorem for excitations in crystals 
Proof by group theory 
Proof by Fourier Expansion (later) 
Applies to any excitations - phonons, electrons, etc. 

Qualitative discussion of Bloch functions. Zone center, Zone boundary 

The first qualitative estimates of band widths in solids 

Ideal crystals are simple and relevant!

• Many solids are made of crystallites that are 
microscopic - but contain ~ 1020 atoms!

Ideal Crystalline Solid
Real poly-
crystalline Solid
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Crystals

• A crystal is a repeated array of atoms                          

Each atom is identical

Two types of atoms

Cubic (square) hexagonal General oblique

a1a2
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(Easier to draw in 2 dimensions – 3 dimensions later)

a1a2

Two Dimensional Crystals

a1

a2

a1

a2

BasisLattice       +Crystal     = 

Called the Bravais Lattice
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Lattices and Translations

• The entire infinite lattice is specified by 2 primitive 
vectors a1 and a2 (also a3 in 3-d)

• T(n1,n2,…) = n1 a1 + n2 a2 (+ n3 a3 in 3-d),
where the n’s are integers

• Note:  the primitive vectors are not unique different 
vectors a1 and a2 can define the same lattice 

a1

a2

a1

a2*

Wigner-Seitz Cell -- Unique

a1

a2

One possible Primitive Cell Another choice

• All primitive cells have same area (volume)
• Wigner Seitz Cell is most compact, highest symmetry cell 

possible
• Also same rules in 3 dimensions
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Crystalline layers with >1 atom basis

• One CuO2 layer in the High Tc
superconductors

CuO2 Basis

2

3

Cu

O

O

CuO2 Layer

Cu Oxygen

Square Lattice

a1

a2

a1

a2

2

3

• Square lattice
• One basis unit on each site 
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Crystalline layers with >1 atom basis

• A single layer of graphitic carbon 
(graphene)

– The two atoms in the cell are both Carbon

• A single layer of hexagonal boron nitride 
(BN)

Honeycomb Lattice
(graphene or BN layer)

a1

a2
2

Hexagonal Lattice

a1

a2

Basis
2 C atoms 
or  BN pair
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Three Dimensional Lattices
Simplest examples

• Orthorhombic: angles 90 degrees, 3 lengths different
Tetragonal: 2 lengths same
Cubic: 3 lengths same

• Hexagonal: a3 different from a1, a2 by symmetry

Simple Orthorhombic Bravais Lattice

a1

a2

a3

Hexagonal Bravais Lattice

a1a2

a3
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Conventional Cell with 2 atoms at positions
(000), (1/2,1/2,1/2) a

Primitive cell is one atom
8 neighbors

Cubic Lattices

a3

a2

a1

a

a

a

Simple Cubic Body Centered Cubic (BCC)

Length of each side - a

Primitive lattice vectors
a1 = (1,0,0) a
a2 = (0,1,0) a
a3 = (0,0,1) a

One atom per cell at position (0,0,0)
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Conventional Cell with 4 atoms at positions
(000 ), (0,1/2,1/2), (1/2,0,1/2), (1/2,1/2,0)a

Primitive cell is one atom
12 neighbors (cubic close-packed)

Cubic Lattices

a3

a2

a1

Simple Cubic Face Centered Cubic (FCC)

Length of each side - a

Primitive lattice vectors
a1 = (1,0,0) a
a2 = (0,1,0) a
a3 = (0,0,1) a

One atom per cell at position (0,0,0)

a3

a2

a1
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X

y

z

a1

a3

a2

Wigner-Seitz CellOne Primitive Cell

Face Centered Cubic

Primitive lattice vectors
a1 = (1/2,1/2,0) a
a2 = (1/2,0,1/2) a
a3 = (0,1/2,1/2) a

One atom per cell at position (0,0,0)
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X

y

z

a3

a1

a2

Body Centered Cubic

Wigner-Seitz CellOne Primitive Cell
Primitive lattice vectors

a1 = (1/2,1/2,-1/2) a
a2 = (1/2, -1/2,1/2) a
a3 = (-1/2,1/2,1/2) a

One atom per cell at position (0,0,0)
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NaCl Structure with 
Face Centered Cubic Bravais Lattice

ZnS Structure with 
Face Centered Cubic Bravais Lattice

C, Si, Ge form diamond structure with 
only one type of atom 

X

y

z

Cubic crystals with a basis
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NaCl Structure with 
Face Centered Cubic Bravais Lattice

X

y

z

NaCl Structure
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X

y

z

CsCl Structure

a3

CsCl Structure
Simple Cubic Bravais Lattice

a2

a1

From http://www.ilpi.com/inorganic/structures/cscl/index.html
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Characteristic types of binding 

Closed-Shell Binding
Close packed

Metallic Binding
Close packed

Covalent Binding
Open Structures

Ionic Binding
Structure depends upon radii of the two ions 

– large cations are close packed
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This leads to the definition of the reciprocal lattice – next slide

Reciprocal lattice and Brillouin zone (BZ)

The sum vanishes unless q T = 2 x integer for all T  -- Thus q ai = 2 x integer 

Fourier Components of a periodic f(r) function in a crystal
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This is the definition of the reciprocal lattice – examples on next slide

Reciprocal lattice and Brillouin zone (BZ)
The set of vectors q that satisfy the condition q ai = 2 x integer form a lattice
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Brillouin Zone – example in 2 dimensions

a1

a2
b2

b1

Wigner–Seitz cell

a1

a2
b2

b1

Brillouin zone
Wigner-Sietz cell
of reciprocal lattice 

Lattice in real space Reciprocal lattice

In 2-dimensions
b1 a1 =2 ,  b1 a2 =0
b2 a1 =0,  b2 a2 = 2

Physical importance of BZ – For vectors k on the boundary of the BZ,
k = ½ G so that |k| = |k-G|.  This is the condition for Bragg scattering, which
occurs only for k on the surface of the BZ. 
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Reciprocal lattices - examples for cubic lattices

Primitive translation 
vectors of lattice in 
real space in units of 
lattice constant a

Rotated Fcc, bcc are reciprocal 
to one another

Check it your self – Do the vectors obey the conditions?

Primitive translation 
vectors of reciprocal 
lattice in units of 2 /a
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Geometric Construction of 
Diffraction Conditions

• Recall kin – kout = G
and |kin| = |kout|

• Consequence of condition 
| 2 kin G | = G2

• The vector kin (and kout) lies along the per
Perpindicular bisector of a G vector

• One example is shown

b2

kin

b1

-kout
G
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Diffraction and the 
Brillouin Zone  

• Brillouin Zone  - (BZ)  -
the Wigner-Seitz cell of 
the reciprocal lattice

• Formed by perpendicular 
bisectors of G vectors

• Special Role of Brillouin Zone
– Diffraction occurs only for k on 

b2

kin

Brillouin Zone

b1

-kout G

R. Martin - preschool - crystals 24

Example of FCC

τ

ZnS (GaAs, …)
(Diamond if the two atoms

are the same element)
fcc lattice
Basis:  Zn at (0,0,0)

S at (¼, ¼, ¼)

Reciprocal lattice –
bcc

Brillouin Zone
(Wigner-Seitz

cell for the 
reciprocal

lattice)
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Conclusions
• Crystal structure =  lattice + basis

– Bravais lattice of translations – multiples of the primitive 
translations

– Basis specifies the atoms that are associated with each lattice point 
• Reciprocal lattice

– Set of vectors G in reciprocal space that are the Fourier components 
of periodic functions

• Brillouin zone (BZ) 
– Wigner-Seitz cell of the reciprocal lattice 
– The surface of the BZ are the points where Bragg scattering occurs
– Will be important in the understanding of electron states

• Often used examples
– Zinc-blende (diamond) – fcc lattice - basis of 2 atoms 
– Reciprocal lattice is bcc
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Schrodinger Equation 
• Basic equation of Quantum Mechanics

where
m = mass of particle
V(r) = potential energy at point r

2 = (d2/dx2 + d2/dy2 + d2/dz2)
E = eigenvalue = energy of quantum state

(r) = wavefunction
n (r)  = | (r) |2 = probability density 

• Key Point for electrons in a crystal: The potential
V(r) has the periodicity of the crystal

[ - (h2/2m) 2 + V(r) ] (r) =  E (r)
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Schrodinger Equation 
• How can we solve the Schrodinger Eq.

where V(r) has the periodicity of the crystal?

• This is the key practical computational problem for the 
methods used in the electronic structure school

• Here we consider simple cases as an introduction
One dimension

[ - (h2/2m) 2 + V(r) ] (r) =  E (r)
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Consider 1 dimensional example
• If the electrons can move freely on a line from 0 to L 

(with no potential), 

• Schrodinger Eq. In 1d with V = 0
- d2/dx2 (x) =  E (x)

• If we have periodic boundary conditions ( (0) = (L))
then the solution is:

(x) = L-1/2 exp( ikx), k =  m (2 /L), m = 0,1,..

E(k) =

0 L

(h2/2m)

(h2/2m) | k |2
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Electrons on a line
• For electrons in a box, the energy is just the kinetic energy 

E (k) =
• Values of k fixed by the box, k =  m (2 /L), m = 0, 1, . . .

E

k kFkF

EF

Filled
states

Empty
states

• Pauli Principle - The lowest energy state is for electrons is to fill 
the lowest states up to the Fermi energy EF and Fermi
momentum kF – two electrons (spin up and down) in each state

• This is a metal – the electrons can conduct electricity

(h2/2m) k2
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Electrons on a line with potential V(x)
• What happens if there is a potential V(x) that has the 

periodicity a of the crystal?
• An electron wave with wavevector k can suffer Bragg

diffraction to k G, with G any reciprocal lattice vector

E

k
/a/a 0

G

Bragg Diffraction
occurs at 

BZ boundary

State with k = /a
diffracts to k = - /a

and vice versa
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Interpretation of Standing waves at 
Brillouin Zone boundary 

• Bragg scattering at k = /a leads to the two possible 
standing waves.  Each is a combination of the right 
and left going waves exp( i x/a) and exp(-i x/a):

(x) = exp( i x/a) + exp(-i x/a) = 2 cos( x/a)
(x) = exp( i x/a) - exp(-i x/a) = 2i sin( x/a),

The density of electrons for each standing wave is:

| (x)|2 = 4 cos2( x/a)
| (x)|2 = 4 sin2( x/a)
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Interpretation of Standing waves at 
Brillouin Zone boundary 

0 L

a
Atoms - attractive

(negative) potential

(x)|2 - low density at atoms
high energy

0 L

| (x)|2 - high density at atoms
low energy
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Electrons on a line with a periodic V(x)
• Bands changed greatly only at zone boundary  

Standing wave at zone boundary
Energy gap -- energies at which  no waves can travel 
through crystal

Energy
Gap

k/a/a 0

En
er

gy

Standing wave with high 
density at atom positions

--low energy
Far from BZ boundary

wavefunctions and energies
approach free electron values

if the potential is weak 

E

E

Standing wave with low 
density at atom positions

--high energy
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Independent electrons – Plane wave methods (1)

The independent-particle Schrodinger equation

Plane wave basis – always possible – it is Fourier analysis

General theory -- From book –or Solid State Physics  text
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Expression for the Schr. Eq. in a plane wave basis

Independent electrons – Plane wave methods (2)

Kinetic energy is simple – easy to differentiate a plane wave!

Plane wave are eigenstates of K.E. – The only thing that mixes
the plane waves is the potential 
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Fourier Components of the potential in a crystal

Independent electrons – Plane wave methods (3)

Key point:  The potential only couples  waves q and q’ if they
differ by a reciprocal lattice vector -- q – q’ = Gm
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The hamiltonian matrix in a plane wave basis 

Independent electrons – Plane wave methods (4)

Key point:  Each k is independent.  The problem can be solved
at each k-point separately 

Note that k only appears in the kinetic energy!
(Actually V depends on k in pseudopotentials)

Matrix eigenvalue equation

k is defined to be in a primitive cell of 
the reciprocal lattice around k =0
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We have found that each eigenstate has a definite k and it is composed 
of Fourier components k + G where G is any reciprocal lattice vector.
Therefore, can always be written k = exp(ikr) uk(r ) where u is periodic 

Bloch theorem 

2. The solutions form bands of eigenvalues i(k)

1. The Bloch theorem 

3. k is conserved – it is called crystal momentum which is like real momentum
except that it is only defined in the BZ – the solutions are periodic in k,
i.e., the same for k and k+G for any reciprocal lattice vector G 

*

*

*
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The BZ is the Wigner Seitz cell of the reciprocal lattice  --
the most compact primitive cell

Role of the Brillouin Zone (BZ) 

The BZ is unique among all primitive cells because its boundaries are the
bisecting planes of the G vectors where Bragg scattering occurs (see Sec. 4.2). 

Inside the Brillouin zone there are no such boundaries: 

the bands must be  continuous and analytic inside the zone. 

The boundaries are of special interest since every boundary point is a k vector 
for which Bragg scattering  can occur; this leads to special features, such as 
zero group velocities due to Bragg scattering at the BZ boundary



Brillouin Zone - Examples

BCC

BZ for FCC 
real-space lattice

hexagonal

Simple cubic

Hx

z

y

H

P

Γ

Λ

Δ

Σ
N

Γ

Λ

Δ Σ

x

y

z

R

M

X

X

Σ

M

Γ

Δ

A H

K

L

z

H

y

x

K

T

Γ

X

K

L

X

X

K
W

Λ

Δ
Σ

U
x

z

X

y

WU

(a) (b)

(c)
(d)

Useful Web site
BZ with labels for all 230 space groups
http://www.cryst.ehu.es/cryst/get_kvec.html

Electron Excitations - Bands 

Universitat Autonoma Barcelona  -- February 17, 2006 42

• Understood since the 1920’s - independent electron theories 
predict that electrons form bands of allowed eigenvalues, with
forbidden gaps 
•Lowest energy state is for bands filled to the Fermi level (exclusion principle)
• Established by experimentally for states near the Fermi energy

Extra added electrons
go in bottom of 
conduction band

Missing electrons
(holes) go in top of 

valence band

Empty Bands

Filled Bands

Gap

Silicon

Examples of bands in fcc crystals
Electron bands, phonon bands in same BZ

L Γ Δ χΛ
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L1
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GaAs

GaAs – phonons – lattice vibrations
described by phonons with k vectors in the BZ

Nature of the Bloch functions

Just by inspection of these two figures, one can see a way to make
qualitative (often quantitative!)  estimates about energy bands 
in solids!

Can you see the idea?

Zone center
k = 0

Zone boundary 
k = /a

Fig. 4.11

Atomic-like near each nucleus



Estimates of band widths in solids
-- using only information from atoms! --

The change in energy of the atomic state with boundary conditions
( = 0 at the r = r0 or d /dr = 0 at r=r0 ) gives an estimate of the band
width in the solid! 

Calculation on atom
with different 
boundary conditions

Zone center
k = 0

Zone boundary 
k = /a

Fig. 4.11

Atomic-like near each nucleus

Bottom

Atomic

Top

(r
)

r

r0

W
(

V
)

ψ

r0 = ½ the nearest neighbor distance in the solid

This idea is close to the original work of Wigner and Seitz in 1933
and modern KKR and LMTO work!   More later in course.

Fig. 10.3
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Two fcc crystals 

Example of bands plotted along lines in the BZ 
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47

Integrated quantities like the density and the total energy are
always sums over all the occupied states.  In a crystal this means
a sum over bands and an integral over the BZ

Integrals over the BZ 

NOT in a standard `text – but needed for any total quantity-
energy, density, etc. are sums over all occupied states – in
Integrals over the BZ
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Special k-points 

“Special k-points” denotes  a regular grid of point in the BZ chosen to 
be optimal for integrating a smooth periodic function  

This is useful in crystals because the eigenvalues k and eigenfunctions

k(r) vary smoothly in the BZ for each band.  Thus special points are 
useful for integrals such as the sum of eigenvalues of the occupied 
bands and the electron density.

Examples of special points in the BZ in units of /a

0
xx xx1/4

1-1

3/4-3/4 -1/4

Key points:   Any function g(k) that can be expended in Fourier components 
up to 3 /a are integrated exactly by the sum at these points.
Only two points need to be calculated since k and –k are conjugate solutions.
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Special k-points 

“Special k-points” are even more useful in higher dimensions

Example - 2 dimensions

0

x

x¼, ¼

1-1

¾. ¾

Key points:   Only 2 points are needed in 2 dimensions to get the same 
accuracy as in one dimension described before
This also works in 3-d – two points can give an accurate result for the integral!
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Conclusions
• Plane waves solution for electronic states in crystals

– Hmiltoian matrix given simply in terms involving Fourier 
components of the potential

• Bloch theorem – proved easily using plane waves
– k(r ) = exp(ikr)Uk(r ) where uk(r ) is periodic

• Electron bands
– Plotted along bands in the BZ
– Interpretation in terms of atomic-like states 

(LCAO defined more carefully later)
• Integration over the BZ to find total properties 

– Total energy, electron density, forces, . . .
– Special k points

• These are the parts that enable actual Kohn-Sham 
calculations


