
Electronic Structure - Fudan - 2010 - Homework 1 Solutions

There may be mistakes! Let me know if you find an error in the statement of a problem
or‘solution!

GRADING: Total 25 points; 5 points for each problem
Problem 5 is difficult - graded easy if you tried

MISTAKES: There are two mistakes. EXTRA POINTS given for finding the mistakes.
See below.

1. Crystals

Give the Bravais lattice and the basis for:

(a) A line of atoms spaced by a, X −−X −−X −−X −−
Solution: The Bravais lattice is the set of points spaced by a:⊙

−−
⊙

−−
⊙

−−
⊙

−−, and the basis is X

(b) If the above crystal is dimerized, this is alternating short and long bonds X −
X −−−X −X −−−. Give two ways to choose the basis.
Solution: For parts b,c, and d the Bravais lattice is the same: points spaced by
2a,

⊙
−−−−

⊙
−−−−

⊙
−−−−

⊙
−−−−

Basis: X −X or X −−−X

(c) A line of atoms spaced by equal distance a with alternating A and B atoms
A−−B −−A−−B −−. Give two ways to choose the basis.
Solution: See above for Bravais lattice. Basis: A−−B or B −−A

(d) If there is the combination of both alternating A and B atoms and alternating
short and long bonds. Give two ways to choose the basis.
Solution: See above for Bravais lattice. Basis: A−B or B −−−A

(e) A two dimensional graphene crystal with the distance between atoms denoted
by D.
Solution: The basis is two atoms spaced byD and the Bravais lattice is hexagonal
with primitive lattice vectors of length

√
3D at a 60 degree angle. See figures in

lecture for orinettaion.

(f) A NaCl crystal with the side of conventional cell having length a.
Solution: FCC with basis (0, 0, 0) and (0, 0, 12a)

(g) A Si crystal with the side of conventional cell having length a.
Solution: FCC with basis (0, 0, 0) and (14a,

1
4a,

1
4a)

2. Reciprocal lattice

(a) Show explicitly that fcc and bcc lattices are reciprocal to one another.
Solution: This can be demonstrating that the vectors obey the relation ai ·bi = 1
and ai ·bj = 0 for i ̸= j. That is, a1 is perpendicular to b2 and b3, etc. See Lect
2, slide 21, where it asks you to show that the vectors obey the relation on slide
19.
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For example: consider the fcc vector a1 = (0, 12 ,
1
2). The dot products with the

bcc vectors b1 = (−1, 1, 1), b2 = (1,−1, 1) and b3 = (1, 1,−1) are: a1 · b1 = 1,
a1 · b2 = 0 and a1 · b3 = 0.

Also a solution with cross product formulas is just as good.

(b) For the two-dimensional graphene lattice, show that the reciprocal space lattice
is hexagonal and that it is rotated with respect to the real space lattice. What
is the angle of rotation?
Solution: 30 degrees. This can be seen by drawing the vectors as in Lect. 2, slide
20. Also 90 degrees is correct because we can have 30 plus‘any multiple of 60 in
a hexagonal lattice.

3. Density of electrons

The local density approximation is best for high densities of electrons. The density
can be characterized by rs, the radius of a sphere that has the average volume per
electrons: (4π/3)r3s = 1/n where n is the density. Note that n is the density counting
both up and down spin electrons. Typical values in solids are ≈ 2− 4 in units of the
bohr radius a0. For rs >≈ 5, the electrons may become highly correlated.

(a) Consider an fcc crystal with a denoting the length of the side of the conventional
cube, show that rs =

a
2 (

3
2πZ )

1/3 where Z is the number of electrons per cell.

(b) For the valence electrons in diamond carbon, show that your result in the previous
exercise gives rs ≈ 2.0 in units of the bohr radius a0.
Solution: There is a mistake: the value of rs ≈ 2.0 is for Si. For carbon it should
be rs ≈ 1.3. (Extra credit given to anyone who found the correct answer with the
correct reasoning!) For carbon the answers is found using the lattice constant
a = 3.57Å and Z = 8 valence electrons per cell.

4. Special points

Special points are designed to evaluate the integral over periodic functions f(k) as
the sum over only a few points. We can use the fact that all the properties of bands
are periodic in k with periodic volume equal to the Brillouin zone (BZ). Examples:
The average of eigenvalues ϵk is needed for the total energy per cell; the total density
n(r) normalized to one electron per band in the cell (2 electrons counting spin) is the
integral of the density of the eigenfunction at wavevector k, |ψk(r)|2. We can find the
average of f(k) by summing over a fine grid, but we can do this much more efficiently
for smooth periodic functions. Since bands functions are smooth they can always be
represented by a Fourier series f(k) = A0+A1 cos(ka)+A2 cos(2ka)+A3 cos(3ka)+. . ..
Often f(k) can be represented by a very small number of Fourier components with
Ai = 0 for all i > nmax. However, we do not know the values of A0, A1, . . . in advance;
we need to find the average A0 by calculating f(k) at points k in the BZ. Special
points are chosen so that the average of each cosine function is zero for 0 < i, n,so
that the average of f(k) gives the desired value A0.

a. For a one-dimensional crystal with cell length a, show that the average of f(k) over
the Brillouin zone (BZ) is given correctly by 1

2(f(
1
4
π
a ) + f(34

π
a )), if f is given by the
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Fourier components f(k) = A0+A1 cos(ka)+A2 cos(2ka)+A3 cos(3ka) and all higher
Fourier components are zero.
Solution:The sums vanish for each of the terms A1, A2, and A3 for the two k points;
thus the sum is simply A0 which is the averge value of f9k).

b. However, there is an error if higher Fourier components are not negligible. What
is the error due to a term A4 cos(4ka)?
Solution: Adding the two terms gives A0 −A4, wo that the error is −A4.

c. Extend the arguments to a two dimensional square lattice with side a where we
consider a function f(kx, ky) = A00+A10 cos(kxa)+A01 cos(kya)+A1,1 cos(kxa+kya)+
. . .. Consider the three points (1/4,1/4), (3/4,3/4) and (1/4,3/4), where (1/4,3/4) is
weighted by a factor of 2 since it actually represents two equivalent points (1/4,3/4)
and (1/4,1/4). Show that this is sufficient correctly give the average A00 for all Fourier
components up through (3, 3). where a is the square edge. ASK PROF. MARTIN IF
IT IS NOT CLEAR WHAT YOU NEED TO DO IN THIS EXERCISE.

Solution: THERE IS A MISTAKE. (I confused two problems. My apologies.) These
point do NOT give the correct result. The points should be ONLY two points:
(1/4,1/4,1/4) and (3/4,3/4,3/4). Full credit to anyone who found the correct result
with the four points given in the problem. EXTRA POINT FOR ANYONE WHO
FOUND THE CORRECT POINTS.
The actual solution is long to write out but it is simply the sum of the cosine terms
for each order.

5. “Force Theorem” (“Helmann-Feynman theorem”)

In his undergraduate thesis, Feynman showed that the force on any nucleus in simply
the charge of the nucleus times the electric field at the site of the nucleus due to the
electron density n(r) and the other nuclei. This is obvious if the electron density
does not change as one nucleus is given an infinitesimal displacement. But in fact the
electrons respond, the wavefunction changes, etc.

The object of this problem is to show that if the electrons are in their ground state,
these complicated changes in the electron state do not affect the force. This can be
done in extremely difficult ways or by a very easy argument. DO NOT SPEND A
LONG TIME ON THIS - ASK PROF. MARTIN IF THIS SEEMS DIFFICULT.

Hint: All changes in the electrons are described by the changes in their ground state
wavefunction as the atoms is displaced. However, we know something about ground
state wavefunction; it is the function that gives the lowest energy. This is sufficient
to find the desired result.

Solution 1: A general argument. If all the degrees of freedom are at equilibrium, then
there is no change in energy to linear order, and thus no contribution to the force
which is the linear change in energy as the nucleus is displaced. Full credit of you
state this clearly.

Solution 2. A proof given in many texts using the wavefunction: E =< Ψ|H|Ψ > and

dE

dR
=< Ψ|dH

dR
|Ψ > + <

dΨ

dR
|H|Ψ > + < Ψ|H|dΨ

dR
> .
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The only term in H that depends upon R is the potential due to that nucleus. Thus
the first term is the expectation value of the force on that nucleus. As stated in the
hint, the proof requires that there be no contribution due to changes in Ψ. This can
be proven by noting that Ψ is an eigenfunction HΨ = EΨ, so that the last two terms
can be written

<
dΨ

dR
|H|Ψ > + < Ψ|H|dΨ

dR
>= E

[
<
dΨ

dR
|Ψ > + < Ψ|dΨ

dR
>

]
= E

d

dR
< Ψ|Ψ >= 0,

where the last equality follows because Ψ is normalized and < Ψ|Ψ > does not change
with the displacement of a nucleus.

Solution 3: A shorter proof very similar to solution 2, but using DFT where E is a
functional E[n] = Einternal +

∫
Vext(r)n(r).

dE

dR
=

∫
dVext(r)

dR
n(r) +

∫
δE

δn(r)

dn(r)

dR

The first term is the direct force the involves only the density and the second vanishes
since δE

δn(r) = 0 for the ground state.
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